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'The Credo' of Quantum Simulation
• QUANTUM many-body systems: 
 
The system is in a superposition state 
of all possible configurations …  

Y =

AND AND AND

c1 c2 c2N

Schrödinger

Exponentially large Hilbert space

It is difficult to put quantum many-body 
physics on a computer: quantum simulator 
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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locality of interaction. I would not like to think of a very enormous 
computer with arbitrary interconnections throughout the entire thing. 

Now, what kind of physics are we going to imitate? First, I am going to 
describe the possibility of simulating physics in the classical approximation, 
a thing which is usuaUy described by local differential equations. But the 
physical world is quantum mechanical, and therefore the proper problem is 
the simulation of quantum physics--which is what I really want to talk 
about, but I'U come to that later. So what kind of simulation do I mean? 
There is, of course, a kind of approximate simulation in which you design 
numerical algorithms for differential equations, and then use the computer 
to compute these algorithms and get an approximate view of what ph2csics 
ought to do. That's an interesting subject, but is not what I want to talk 
about. I want to talk about the possibility that there is to be an exact 
simulation, that the computer will do exactly the same as nature. If this is to 
be proved and the type of computer is as I've already explained, then it's 
going to be necessary that everything that happens in a finite volume of 
space and time would have to be exactly analyzable with a finite number of 
logical operations. The present theory of physics is not that way, apparently. 
It allows space to go down into infinitesimal distances, wavelengths to  get 
infinitely great, terms to be summed in infinite order, and so forth; and 
therefore, if this proposition is right, physical law is wrong. 

So good, we already have a suggestion of how we might modify 
physical law, and that is the kind of reason why I like to study this sort of 
problem. To take an example, we might change the idea that space is 
continuous to the idea that space perhaps is a simple lattice and everything 
is discrete (so that we can put it into a finite number of digits) and that time 
jumps discontinuously. Now let's see what kind of a physical world it would 
be or what kind of problem of computation we would have. For example, 
the first difficulty that would come out is that the speed of light would 
depend slightly on the direction, and there might be other anisotropies in 
the physics that we could detect experimentally. They might be very small 
anisotropies. Physical knowledge is of course always incomplete, and you 
can always say we'll try to design something which beats experiment a t  the 
present time, but which predicts anistropies on some scale to be found later. 
That's fine. That would be good physics if you could predict something 
consistent with all the known facts and suggest some new fact that we didn't  
explain, but I have no specific examples. So I'm not objecting to the fact 
that it's anistropic in principle, it's a question of how anistropic. If you  tell 
me it's so-and-so anistropic, I'll tell you about the experiment with the 
lithium atom which shows that the anistropy is less than that much, and 
that this here theory of yours is impossible. 
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Experimental Quantum Simulation
• QUANTUM many-body systems: 
 
The system is in a superposition state 
of all possible configurations …  

Y =

AND AND AND

c1 c2 c2N

Schrödinger

• Building Quantum Simulators with AMO-systems, [solid state] … 

• cold atoms in optical lattices
• trapped ions
• photons …

controlled many-body quantum systems

UQUAM 
ERC Synergy Grant

- dynamics: closed / open
- preparation & measurement



Entanglement & Quantum Devices
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• QUANTUM physics: 
 
The system is in a superposition state 
of all possible configurations …  

“Entanglement”

Hilbert Space 

e.g. ground states (?)

• Remark: Quantum Information provides insight 
into classical simulations

MATRIX 
PRODUCT 

STATE

2.1. Time Evolving Block Decimation Algorithm (TEBD) 15

The dimensions are dim(HA1 ⊗ HA2) = d2, dim (HR2) = d(N−2) and there-
fore χ2 = d2. Noting that {|ΦR2

α2
⟩} forms an orthonormal basis in HR2 , the

Schmidt states |ΦR1
α1
⟩ ∈ HR1 = HA2 ⊗HR2 can be expressed as

|ΦR1
α1
⟩ ≡

d∑

i2

χ2∑

α2

Γ[2]i2
α1α2

λ[2]
α2
|i2⟩|ΦR2

α2
⟩, (2.12)

where a new three dimensional array Γ[2]i2
α1α2 has been introduced. Substituting

(2.12) into (2.10), the state of the whole system can be written as

|Ψ⟩ =
d∑

i1,i2

χ1,χ2∑

α1,α2

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
|i1⟩|i2⟩|ΦR2

α2
⟩. (2.13)

Iterating the steps (2.11) and (2.12) on the remaining (N − 3) possible split-
tings of the full space H (i.e. between sites 3 ↔ 4, 4 ↔ 5, . . . , (N − 1) ↔ N),
the complex coefficients of an arbitrary quantum system composed of N local
Hilbert spaces of dimension d

|Ψ⟩ =
d∑

i1,i2,...,iN

ci1,i2,...,iN |i1⟩|i2⟩ . . . |iN⟩ (2.14)

can be re-expressed as

ci1,i2,...,iN ≡
χ1∑

α1

χ2∑

α2

· · ·
χN−1∑

αN−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

. . . λ[N−1]
αN−1

Γ[N ]iN
αN−1

. (2.15)

Diagrammatic Notation

It turns out to be useful to introduce a diagrammatic notation for the de-
composition (2.15). This can be visualised as

i1 i2

. . .
iN

c ≡

i1

Γ[1]
λ[1]

α1

i2

Γ[2]
λ[2]

α2 . . .
λ[N−1]

αN−1

iN

Γ[N ]

, (2.16)

which is a representation in which indices are depicted by straight lines and
objects with m indices are m-dimensional arrays. For example, in (2.16) the
state coefficients ci1,i2,...,iN are described by the large rectangle on the left

hand side and the three dimensional Γ[l]il
αlαl (1 < l < N) objects are rendered

Replaced the 2N coefficients with ~ (2χ2 + χ) n coefficients

- 1D: tDMRG
- 2D: PEPS, MERA

- eigenstates
- time dependent

When is quantum simulation interesting?
…, e.g. when these techniques fail.



• general purpose quantum 
computing 
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qubits quantum gates read out

time|√⇥�Ut |√⇥

coherent Hamiltonian evolution
    - quantum gates
    - deterministic

Quantum Info Quantum Optics

quantum logic network model

• atomic physics: trapped ions

R. Blatt

Exp.:  Innsbruck, NIST, JQI, MIT, Mainz, MPQ ... 

laser
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qubits quantum gates read out

time|√⇥�Ut |√⇥

coherent Hamiltonian evolution
    - quantum gates
    - deterministic

Quantum Info Quantum Optics

quantum logic network model

• atomic physics: trapped ions

R. Blatt

Exp.:  Innsbruck, NIST, JQI, MIT, Mainz, MPQ ... 

phonon bus
laser
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Quantum operations on Innsbruck 
ion-trap quantum computer

+++ ...

Individual light-shift gates
�(0)

z , �(1)
z , �(2)

z

Collective spin flips
S

x

, S
y

Physical 
environment

Env. System
0 1 n

S2
x

= �(0)
x

�(1)
x

+ �(1)
x

�(2)
x

+ �(0)
x

�(2)
x

Mølmer-Sørensen gate

�(0)
x

�(1)
x

�(1)
x

�(2)
x

�(0)
x

�(2)
x

Coupling of environment with 
physical environment

Optical pumping of 
„environmental“ ion

J. Barreiro, M.Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, 
P. Zoller and R. Blatt, Nature 2011



S. Lloyd (1996)

idea: approximate time evolution by a stroboscopic sequence of gates

single qubit gate 2-qubit gate 

qubits
or

spins

time
0

...

t�t1

multi-qubit gate 
desired many-body Hamiltonian
on a coarse-grained time scale

e�iHeff t

physical operations on quantum hardware  
(e.g. laser pulses)

H = �J�z
1�z

2 + B(�x
1 + �x

2 )

U(t) � e�iHt/� = e�iH�tn/� . . .�iH�t1/�

e�iH�t/� � e�iH1�t/� e�iH2�t/� e
1
2

(�t)2

�2 [H1,H2]

first term second term
Trotter errors for 

non-commuting terms

Trotter expansion:

... not restricted to unitary dynamics

Digital Quantum Simulation



when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.

References and Notes
1. T. Stachel, G. P. Brey, J. W. Harris, Elements 1, 73

(2005).
2. B. Harte, Mineral. Mag. 74, 189 (2010).
3. G. P. Bulanova et al., Contrib. Mineral. Petrol. 160,

489 (2010).
4. B. Harte, N. Cayzer, Phys. Chem. Miner. 34, 647 (2007).
5. F. V. Kaminsky et al., Contrib. Mineral. Petrol. 140,

734 (2001).
6. T. Stachel, G. P. Brey, J. W. Harris, Contrib. Mineral. Petrol.

140, 1 (2000).
7. R. Tappert et al., Geology 33, 565 (2005).
8. M. J. Walter et al., Nature 454, 622 (2008).
9. R. Tappert et al., Geology 37, 43 (2009).
10. P. Cartigny, Elements 1, 79 (2005).
11. B. Harte, J. W. Harris, M. T. Hutchison, G. R. Watt,

M. C. Wilding, in Mantle Petrology: Field Observations
and High Pressure Experimentation, Y. Fei, C. M. Bertka,
B. O. Mysen, Eds. Geochemical Society Special
Publications, 125 (1999).

12. P. C. Hayman, M. G. Kopylova, F. V. Kaminsky,
Contrib. Mineral. Petrol. 140, 734 (2005).

13. T. Stachel, J. W. Harris, G. P. Brey, W. Joswig,
Contrib. Mineral. Petrol. 140, 16 (2000).

14. Y. Fukao, M. Obayashi, T. Nakakuki, Deep Slab Project
Group, Annu. Rev. Earth Planet. Sci. 37, 19 (2009).

15. R. D. van der Hilst, S. Widiyantoro, E. R. Engdahl, Nature
386, 578 (1997).

16. K. Hirose, N. Takafuji, N. Sata, Y. Ohishi, Earth Planet.
Sci. Lett. 237, 239 (2005).

17. S. Ono, E. Ito, T. Katsura, Earth Planet. Sci. Lett. 190,
57 (2001).

18. A. Ricolleau et al., J. Geophys. Res. 115, (B8), B08202
(2010).

19. L. Heaman, N. A. Teixeira, L. Gobbo, J. C. Gaspar, U-Pb
mantle zircon ages for kimberlites from the Juina and
Paranatinga Provinces, Brazil. Extended Abstracts, 7th
International Kimberlite Conference, Cape Town,
South Africa, 322 (1998).

20. See supporting material on Science Online.

21. F. E. Brenker et al., Earth Planet. Sci. Lett. 236, 579
(2005).

22. F. Brenker, T. Stachel, J. W. Harris, Earth Planet. Sci. Lett.
198, 1 (2002).

23. B. J. Wood, Earth Planet. Sci. Lett. 174, 341 (2000).
24. M. B. Kirkley, J. J. Gurney, M. L. Otter, S. J. Hill,

L. R. M. Daniels, Appl. Geochem. 6, 477 (1991).
25. S. Shilobreeva, I. Martinez, V. Busigny, P. Agrinier,

C. Laverne, Geochim. Cosmochim. Acta 75, 2237 (2011).
26. S. Poli, E. Franzolin, P. Fumagalli, A. Crottini, Earth

Planet. Sci. Lett. 278, 350 (2009).
27. S. Goes, F. A. Capitanio, G. Morra, Nature 451, 981

(2008).
28. A. Rohrbach, M. W. Schmidt, Nature 472, 209 (2011).
29. M. Akaogi, A. Tanaka, M. Kobayashi, N. Fukushima,

T. Suzuki, Phys. Earth Planet. Inter. 130, 49 (2002).
30. S. A. Gibson, R. N. Thompson, O. H. Leonardos,

A. P. Dickin, G. J. Mitchell, J. Petrol. 36, 89 (1995).
31. J. C. VanDecar, D. E. James, M. Assumpcao, Nature 378,

25 (1995).
32. T. H. Torsvik, K. Burke, B. Steinberger, S. J. Webb,

L. D. Ashwal, Nature 466, 352 (2010).
33. Y. N. Palyanov, Y. M. Borzdov, A. F. Khokhryakov,

I. N. Kupriyanov, N. V. Sobolev, Earth Planet. Sci. Lett.
250, 269 (2006).

Acknowledgments: We thank I. Buisman and S. Kearns
for assisting in the collection of electron microprobe
data and L. Gobbo on behalf of Rio Tinto for providing
samples. Supported by UK Natural Environment Research
Council grant NE/H011242/1 (M.J.W.) and NSF grant
EAR-1049992 (S.B.S. and J.W.). See (20) for additional
compositional data on inclusion phases, experimental run
products, and Raman spectroscopy.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1209300/DC1
Materials and Methods
SOM Text
Figs. S1 to S3
Tables S1 to S5
References (34–45)

3 June 2011; accepted 22 August 2011
Published online 15 September 2011;
10.1126/science.1209300

REPORTS

Universal Digital Quantum Simulation
with Trapped Ions
B. P. Lanyon,1,2* C. Hempel,1,2 D. Nigg,2 M. Müller,1,3 R. Gerritsma,1,2 F. Zähringer,1,2

P. Schindler,2 J. T. Barreiro,2 M. Rambach,1,2 G. Kirchmair,1,2 M. Hennrich,2 P. Zoller,1,3

R. Blatt,1,2 C. F. Roos1,2

A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register

1Institut für Quantenoptik und Quanteninformation, Öster-
reichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1,
A-6020 Innsbruck, Austria. 2Institut für Experimentalphysik, Uni-
versity of Innsbruck, Technikerstr. 25, A-6020 Innsbruck,
Austria. 3Institut für Theoretische Physik, University of
Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.

*To whom correspondence should be addressed. E-mail:
ben.lanyon@uibk.ac.at
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when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.
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Universal Digital Quantum Simulation
with Trapped Ions
B. P. Lanyon,1,2* C. Hempel,1,2 D. Nigg,2 M. Müller,1,3 R. Gerritsma,1,2 F. Zähringer,1,2
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A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register
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when subducted lithosphere entered the shallow
lower mantle and stagnated because of density
inversion and increased mantle viscosity (14, 27)
(Fig. 3B). If heated to ambient mantle tempera-
tures, carbonated basaltic lithologies form carbo-
natedmelts, which can then be reduced to diamond
during reactions with surrounding mantle (8, 28).
Our results also indicate that the diamonds were
transported by convection from the lower to the
upper mantle, where the originally homogeneous
inclusions unmixed. For example, phase relations
along the NaAlSiO4-MgAl2O4 boundary (29) in-
dicate that the bulk composition of inclusion
Ju5-20 would yield the observed assemblage of
nepheline plus spinel (Fig. 1A and fig. S1B) at
depths of ~150 km; other inclusions in diamonds
from the Juina region (3, 4, 8) also suggest equil-
ibration near the base of the Brazilian lithosphere
(~150 to 200 km). Thus, the diamonds record a
history of upward transport on the order of 500
to 1000 km or more before being sampled by a
Cretaceous kimberlite and brought to the surface.

On the basis of seismological and petrological
evidence, previous workers have argued for a man-
tle plume beneath Brazil during the Cretaceous
(30, 31). Furthermore, paleo-plate reconstruc-
tions show that the Juina region of Brazil was lo-
cated at the margin of the African large low shear
velocity provinces during the Cretaceous, which
may be indicative of the presence of deep mantle
plumes (32). We suggest that some portion of
stagnated subducted lithosphere in which the di-
amonds grew was transported from the lower
mantle to the base of the Brazilian lithosphere in
a rising mantle plume (Fig. 3B). The Juina-5 di-
amonds and their inclusions provide compelling
evidence for deep cycling of oceanic crust and

surface carbon into the lower mantle and, ulti-
mately, exhumation back to the upper mantle and
Earth’s surface.
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A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

Althoughmany natural phenomena are ac-
curately described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (1). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly controllable quantum system that can ef-
ficiently perform the simulations (2). Recently,
quantum simulations have been performed in
several different systems (3–13), largely follow-
ing the analog approach (2) whereby an analo-
gousmodel is built, with a directmapping between
the state and dynamics of the simulated system
and those of the simulator. An analog simulator
is dedicated to a particular problem, or class of
problems.

A digital quantum simulator (2, 14–16) is a
precisely controllable many-body quantum sys-
tem onwhich a universal set of quantum operations
(gates) can be performed, i.e., a quantum computer
(17). The simulated state is encoded in a register
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B. Lanyon C. Roos

four and six 
spin systems

remarks:
• scalability (?)
• error correction (?)

experiments (≈1 to 2 ms). The current leading
sources of error, which limit both the simulation
complexity and size, are thought to be laser
intensity fluctuations (23). This is not currently
a fundamental limitation and, once properly ad-
dressed, should enable an increase in simulation
capabilities.

The digital approach can be combined with
existing tools and techniques for analog simu-
lations to expand the range of systems that can be
simulated. In light of the present work, and cur-

rent ion trap development (35), digital quantum
simulations involving many tens of qubits and
hundreds of high-fidelity gates seems feasible in
coming years.
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Fig. 3. Digital simulations of three-spin systems.
Dynamics of the initial state |↑↑↑〉 in three cases.
(A) Long-range Ising system. Spin-spin coupling be-
tween all pairs with equal strength and a transverse
field. C = O2(p /32), D = O4(p /16,0). (B) Inhomog-
eneous distribution of spin-spin couplings, decom-
posed into an equal-strength interaction and
another with twice the strength between one pair.
E = O1(p /2,1). (C) Three-body interaction, which
couples the ∑ jsy

j eigenstates |←←←〉y and |→→→〉y.
An O3(p /4,0) operation before measurement
rotates the state into the logical sz basis. F =
O1(q,1), 4D = O4(p/4,0). Any point in the phase
evolution is simulated by varying the phase q of
operation F. Inequalities bound the quantum pro-
cess fidelity Fp [see (23) for details].

Fig. 4. Digital simulations of four and six spin sys-
tems. Dynamics of the initial state where all spins
point up. (A) Four spin long-range Ising system.
Each digital step is D.C = O4(p/16,0).O2(p/32).
Error bars are smaller than point size. (B) Six spin
six-body interaction. F = O1(q,1), 4D = O4(p/4,0).
The inequality at f = 0.25 p bounds the quantum
process fidelity Fp at q = 0.25 p [see (23) for details].
Lines; exact dynamics. Unfilled shapes: ideal digitized;
filled shapes: data (■P0 ♦P1 ●P2 ▲P3 ►P4 ▼P5 ◄P6,
where Pi is the total probability of finding i spins
pointing down).
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• Hubbard models etc.
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Quantum Info Quantum Optics

Bosons, Fermions
 - strongly correlated system
 - quantum phase transitions
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• atoms or molecules in optical lattices 
[and ions]

Hubbard Hamiltonian

• We “build” a quantum system with desired 
Hamiltonian & controllable parameters, 
e.g. Hubbard models of atoms in optical 
lattices

Analog quantum simulation: “always on” 

tunneling

onsite  
interaction
U

optical potential

~ light 
intensity



Hubbard Toolbox
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• time dependence, 1D, 2D & 3D

• various lattice configurations

• create effective magnetic fields
Raman

• spin-dependent lattices

• laser induced hoppings

D. Jaksch & PZ,  
Annals of Physics 2005



 Superfluid - Mott Insulator  
 Quantum Phase Transition

 Superfluid  Mott Insulator

Trotzky, Pollet et al, 
Nat. Phys. (2010)

 shallow lattice  deep latticecritical

large arrays 
of qubits
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• atoms or molecules in optical lattices 
[and ions]

Quantum Info Quantum Optics

filling the lattice with “qubits”

measure  
single site/atom

single shot 
string measurement

address atom

entangle

Mott insulator of qubits

• general purpose quantum 
computing 

quantum logic network model

a bottom up approach
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• single site addressing

Quantum Info Quantum Optics

5Single-Spin Addressing in an Atomic Mott Insulator,  
I Bloch, S Kuhr et al.,  Nature 2011

Harvard, MPQ, Chicago  
large spacing lattices: Paris, Madison, Penn State, …

entangling gates / interactions

measure  
single site/atom

single shot 
string measurement

address atom

entangle

• general purpose quantum 
computing 

quantum logic network model

✓ Rydberg, collisions, CQED control of quantum 

many-body system on 

level of single quanta 



  Control of Atoms in Optical Lattices

interaction ? 
 
 

e.g. Rydberg

single site addressing
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Observation of chiral edge states
with neutral fermions in synthetic
Hall ribbons
M. Mancini,1 G. Pagano,1 G. Cappellini,2 L. Livi,2 M. Rider,3,4 J. Catani,5,2 C. Sias,6,2

P. Zoller,3,4 M. Inguscio,6,1,2 M. Dalmonte,3,4 L. Fallani1,2*

Chiral edge states are a hallmark of quantum Hall physics. In electronic systems,
they appear as a macroscopic consequence of the cyclotron orbits induced by a
magnetic field, which are naturally truncated at the physical boundary of the sample.
Here we report on the experimental realization of chiral edge states in a ribbon
geometry with an ultracold gas of neutral fermions subjected to an artificial gauge
field. By imaging individual sites along a synthetic dimension, encoded in the nuclear
spin of the atoms, we detect the existence of the edge states and observe the
edge-cyclotron orbits induced during quench dynamics. The realization of fermionic
chiral edge states opens the door for edge state interferometry and the study of
non-Abelian anyons in atomic systems.

U
ltracold atoms in optical lattices represent
an ideal system for studying the physics of
condensed matter problems in a fully tun-
able, controllable environment (1, 2). One
of the notable achievements in recent years

has been the realization of synthetic background
gauge fields, akin to magnetic fields in electronic
systems. By exploiting light-matter interaction, it
is possible to imprint a Peierls phase onto the
atomic wave function. This phase is analogous
to the Aharanov-Bohm phase experienced by a
charged particle in a magnetic field (3–5). These
gauge fields, first synthesized in Bose-Einstein
condensates (6), have recently allowed for the
realization of the Harper-Hofstadter Hamiltonian
in ultracold bosonic two-dimensional (2D) lattice
gases (7, 8), whereas, following a complementary
route based on accurate engineering of the single-
particle Hamiltonian, Chern insulators have been
also realized (9) in systems that lack a netmagnetic
field (10). Theseworks are paving theway toward
the investigation of different forms of bulk topo-
logical matter in atomic systems (5, 11). In the
presentwork, we are instead interested in the edge
properties of fermionic systems under the effects
of a synthetic gauge field. Fermionic edge states

are a fundamental feature of 2D topological
states of matter, such as quantumHall and chiral
spin liquids (12, 13). Moreover, they are robust
against changing the geometry of the system and
can be observed even on Hall ribbons (14). In
addition, fermionic edge states offer appealing
prospects in quantum science, such as the reali-
zation of robust quantum information buses (15),
and they are ideal starting points for the reali-
zation of non-Abelian anyons akin to Majorana
fermions (16, 17).
Here we report the observation of chiral edge

states in a system of neutral fermions subjected
to a synthetic magnetic field. We exploit the high
level of control in our system to investigate the
emergence of chirality as a function of the
Hamiltonian couplings. These results have been
enabled by an innovative approach, proposed in
(18), where an internal (nuclear spin) degree of
freedom of the atoms is used to encode a lattice
structure lying in an “extra dimension” (14), pro-
viding direct access to edge physics. We synthe-
size a system of fermionic particles in an atomic
Hall ribbon of tunable width pierced by an ef-
fective gauge field. One dimension is realized by
an optical lattice, which induces a real tunneling
t between different sites along direction x̂
(Fig. 1A). The different internal spin states are
coupled by a two-photon Raman transition, which
provides a coherent controllable coupling Weiϕx

between different spin components. This can be
interpreted as a complex tunneling amplitude be-
tween adjacent sites of an extra-dimensional lattice
along a synthetic direction m̂ (14, 19). Furthermore,
the phase imprinting laid out by theRamanbeams
amounts to the synthesis of an effective magnetic
field for effectively charged particles (4) with flux
ϕ=2p (in units of the magnetic flux quantum)
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per plaquette (20). The Hamiltonian describing
the system is

H ¼
X

j

X

a

½−tðc†j;acjþ1;a þ h:c:Þ þ mjnj;a&þ

X

j

X

a

Wa

2
ðeiϕjc†j;acj;aþ1 þ h:c:Þ þ xanj;a

! "
ð1Þ

where c†j;aðcj;aÞ are fermionic creation (annihila-
tion) operators on the site ( j,a) in the real ( j ) and
synthetic (a = 1,2,3) dimensions, andnj;a ¼ c†j;acj;a.
The first term describes the dynamics along x̂,
where t can be tuned by changing the intensity
of the optical lattice beams. The dynamics along
m̂ is encoded in the second term:Wa can be con-

trolled by changing the power of the Raman
beams, whereasϕ can be tuned by changing their
angle (20). In Eq. 1, mj describes a weak trapping
potential along x̂, whereas xa accounts for a state-
dependent light shift, providing an energy offset
along m̂. h.c. stands for Hermitian conjugate. In
our experiment, we produced large synthetic
magnetic fields corresponding to ϕ ≃ 0:37p per
plaquette. For fermionic particles, we use alkaline-
earth–like 173Yb atoms, initially prepared in a
degenerate Fermi gas. The sites of the synthetic
dimension (Fig. 1B) are encoded in a subset of
spin states {m} out of the I = 5/2 nuclear spin
manifold, thus providing fermionic “ladders”with
up to six “legs.” These atoms show SU(N)-invariant
interactions [SU(N), special unitary group of degree
N] (21), inhibiting the redistribution of the atoms
among the different synthetic sites by collisional

processes (22, 23). The effect of these interactions—
which is not fundamental for explaining the ob-
servations reported in this manuscript—has been
taken into account in the theoretical model as a
renormalization of the trap frequency (20). This is
possible because the maximum filling fraction is
h ≃ 0:8 atoms per site of the real-space lattice:
For larger filling fractions commensurate with the
lattice, possible insulating phases can be stabilized.
The key advantage offered by the implemen-

tation in a lattice that combines real and syn-
thetic spaces is the possibility to work with a
finite-sized system with sharp and addressable
edges. Specifically, we focus on elementary con-
figurations made up of fermionic ladders with a
small number of legs connected by a tunnel cou-
pling between them. A leg is constituted by a 1D
chain of atoms trapped in the sites of the real
lattice in a specific spin state, whereas the ladder
“rungs” are provided by the synthetic tunneling
(Fig. 1A). The number of legs can be set by con-
trolling the light shifts xa in such a way as to
choose the number of spin states that are cou-
pled by the Raman lasers (20).
We first consider the case of a two-leg ladder

constituted by the nuclear spin states m = –5/2
andm = –1/2. A quantumdegenerate 173Yb Fermi
gas with 1.6 × 104 atoms and an initial temper-
ature T≃ 0:2TF (where TF is the Fermi temper-
ature) is first spin-polarized in m = –5/2. By
slowly turning on the intensity of the optical
lattice along x̂ (and of an additional strong lat-
tice along ŷand ẑ to suppress the dynamics along
the other two real directions), we prepare a sys-
tem of ladders in which all atoms occupy the
m = –5/2 leg with less than one atom per site
(i.e., in a conductive metallic state). Then, by
controlling the intensity and frequency of the
Raman beams (20), we slowly activate the tunnel
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Fig. 1. A synthetic
gauge field in a
synthetic dimension.
(A) We confine the
motion of fermionic
ultracold atoms in a
hybrid lattice, generated
by an optical lattice
along a real direction x̂
with tunneling t, and by
laser-induced hopping
between spin states
along a synthetic direc-
tion m̂. By inducing a
complex tunneling
W1;2eiϕj along m̂, the atom wave function acquires a phase ϕ per plaquette, mimicking the effect of a
transverse magnetic field B on effectively charged particles. (B) Scheme of the 173Yb nuclear spin
states and Raman transitions used in the experiment.

Fig. 2. Chiral dynamics in
two-leg ladders. (A) (Top)
False-color time-of-flight
images of the atoms in the
m = –5/2 and m = –1/2 legs
(averages of ~30 realizations).
(Middle) Integrated lattice
momentum distribution n(k).
(Bottom) h(k) = n(k) – n(–k)
[numerical values within the
plots are the net momentum
unbalance J determined from
h(k)]. Experimental parame-
ters: W1 = 2p × 489 Hz, t =
2p × 134 Hz, W1/t = 3.65, and
ϕ ¼ 0:37p. (B) Time-of-flight
images and h(k) of the m =
–1/2 leg for opposite directions
of the effective magnetic field.
Experimental parameters:
W1 = 2p × 394 Hz, t = 2p ×
87 Hz, W1/t = 4.53, and ϕ ¼ T0:37p. (C) Sketch of the two-leg ladder configuration realized for this experiment. The arrows are a pictorial representation of the
chiral currents. (D) Circles show experimental values of jJj for the m = –1/2 leg as a function of W1/t (averages of data sets taken for ϕ ¼ T0:37p). The error
bars are obtained with a bootstrapping method applied on ~30 different measurements. The shaded area depicts the result of a numerical simulation that
includes thermal fluctuations (20).
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coupling between the legs so as to adiabatically
load the fermionic system in the lowest band of
both the lattice and the Raman-dressed energy
spectrum.
Despite the absence of a real bulk region, this

two-leg configuration is expected to support chi-
ral currents with atoms flowing in opposite di-
rections along the legs (Fig. 2C), as investigated
recently in bosonic systems (24). To observe this,
we measured the relative motion of the atoms in
the two legs by spin-selective imaging of the lat-
tice momentum distribution, obtained by switch-
ing off the synthetic coupling and releasing the
atoms from the lattice. In Fig. 2A (upper panel),
we show two time-of-flight images corresponding
to them= –5/2 andm= –1/2 legs (Fig. 2C) forW1 =
2p × 489 Hz and t = 2p × 134 Hz (W1/t = 3.65).
Here we are interested only in direction x̂, which
reflects the distribution of the lattice momenta k
along the legs (in units of the real-lattice wave
numberkL=p/d, whered is the real-lattice spacing).
The lattice momentum distribution along ŷ is a
uniform square due to the presence of the strong
optical lattice along the transverse (frozen) real
directions (20). The central panel of Fig. 2A shows
the lattice momentum distribution n(k) after in-
tegration of the images along ŷand normalization
according to ∫nðkÞdk ¼ 1.We observe a clear asym-
metry in n(k) [similar to what was reported in
experiments with spin-orbit coupling in harmon-
ically trapped gases (25–27)], which we charac-
terize by defining the function

hðkÞ ¼ nðkÞ − nð−kÞ ð2Þ

which is plotted in the lower panel of Fig. 2A. The

expression J ¼ ∫
1

0
hðkÞdk provides a measurement

of the lattice momentum unbalance and quanti-
fies the strength of the chiral motion of the
particles along the two legs. The values J =
+0.056(3) form = –5/2 and J = –0.060(7) form =

–1/2 are approximately equal in intensity and
opposite in sign, providing direct evidence for
presence of chirality in the system. The small value
of J is attributable to the fact that, in addition to
states exhibiting chiral currents, fermions occupy
other states at the bottom of the band, which do
not display chiral features. We also performed the
same experiment with a reversed direction of the
synthetic magnetic field B (Fig. 2B), observing a
change of sign in J, corresponding to currents
circulating in the opposite direction. This behavior
confirms the interpretation of our data in terms of
chiral currents induced by a synthetic magnetic
field in a synthetic 2D lattice.
The stability of chiral edge states in fermionic

systems is of key importance, for example, for
quantum information applications. In our sys-
tem, the appearance of a chiral behavior is gov-
erned by several key parameters, including the
ratio W1/t, the Fermi energy EF, and the flux ϕ.
These parameters are easy to adjust, so they can
be used to investigate the rise and fall of the edge
currents as a function of theHamiltonian param-
eters (24), as well as to identify which regimes
exhibit stronger chiral features. By varying the
tunneling rates along x̂ and m̂, we observe a
phase transition between a chiral behavior and
a nonchiral regime. The lattice momentum dis-
tribution is measured as a function ofW1/twith-
out affecting other relevant parameters, such as
EF and T. Figure 2D illustrates themeasurement
of jJ j as a function ofW1/t (circles). As expected,
no chirality is observed for vanishing W1, when
the legs are decoupled. Chirality is also suppres-
sed for large inter-edge coupling W1≫t. In the lat-
ter regime, the largest energy scale in the system
is the effective kinetic energy along the synthetic
direction: This contribution is minimized when
the fermions occupy the lowest energy state on
each rung, which does not exhibit any chiral
behavior. The measured values of jJ j compare
well with the results of a numerical simulation

that includes thermal fluctuations (shaded area
in Fig. 2D) (20).
We next considered a three-leg ladder, which

is the minimal configuration for which chiral
currents at the edges can be sharply distinguished
from the behavior of the bulk. The experimental
procedure is analogous to that employed for the
two-leg case, with the Raman parameters adjusted
to extend the synthetic coupling tom = +3/2, with
W2 ≃ 1:41 W1 (20). Figure 3A showsmeasuredn(k)
and h(k) for each of the three legs for W1 = 2p ×
620 Hz and t = 2p × 94 Hz (W1/t = 6.60). We
observe strong chiral currents in the upper- and
lower-edge chains, showing values of J with
opposite sign, similar to the two-leg case [J =
+0.079(6) form = –5/2 and J = –0.062(4) form =
+3/2]. In contrast, the central leg shows a much-
reduced asymmetry in n(k) [J = 0.018(5)], sig-
naling a suppressed net current in the bulk. This
is direct evidence of the existence of chiral states
propagating along the edges of the system, which
leave the bulk mostly decoupled from the edges
(Fig. 3C). This behavior is akin to what is expected
for a fermionic system in a Harper-Hofstadter
Hamiltonian. Bulk states exhibit only local circu-
lations of current, which average to zero when all
of the different states enclosed by the Fermi sur-
face are considered. Only the edges of the system
experience a nonzero current, because there the
chiral nature of the states prevents this cancella-
tion effect from occurring. In the ribbon geometry
of the experiment, the bulk reduces to just a single
central line. Nevertheless, the behavior discussed
above is clearly present and detectable in the ex-
perimental signal. The small width of the ribbon
favors the observation of edge states, given the
large boundary-to-surface ratio of the system,
which is reflected in a substantial population of
states with edge character.
Figure 3C shows the values of J as a function of

W1/t for the three different legs of the ladder. The
results illustrate the role of the bulk-edge coupling:
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Fig. 3. Chiral edge currents
in a three-leg ladder. (A)
Experimental time-of-flight
images (top), n(k) (center),
and h(k) = n(k) – n(–k)
(bottom) for each of the three
legs m = –5/2, m = –1/2, and
m = +3/2 constituting the
ladder, respectively [numbers
shown in the bottom panels
are the values of J determined
from h(k)]. Experimental
parameters: W1 = 2p × 620 Hz,
t = 2p × 94 Hz, W1/t = 6.60,
and ϕ ¼ 0:37p. (B) Sketch of
the three-leg ladder
configuration realized for this
experiment. (C) Circles show
experimental values of the net
momentum unbalance J for
each leg as a function of W1/t.
The shaded areas illustrate the results of a numerical simulation (20). For both experimental and simulation data, blue, green, and red correspond tom = –5/2,
m = –1/2, and m = 3/2, respectively.
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Observation of chiral edge states
with neutral fermions in synthetic
Hall ribbons
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Chiral edge states are a hallmark of quantum Hall physics. In electronic systems,
they appear as a macroscopic consequence of the cyclotron orbits induced by a
magnetic field, which are naturally truncated at the physical boundary of the sample.
Here we report on the experimental realization of chiral edge states in a ribbon
geometry with an ultracold gas of neutral fermions subjected to an artificial gauge
field. By imaging individual sites along a synthetic dimension, encoded in the nuclear
spin of the atoms, we detect the existence of the edge states and observe the
edge-cyclotron orbits induced during quench dynamics. The realization of fermionic
chiral edge states opens the door for edge state interferometry and the study of
non-Abelian anyons in atomic systems.

U
ltracold atoms in optical lattices represent
an ideal system for studying the physics of
condensed matter problems in a fully tun-
able, controllable environment (1, 2). One
of the notable achievements in recent years

has been the realization of synthetic background
gauge fields, akin to magnetic fields in electronic
systems. By exploiting light-matter interaction, it
is possible to imprint a Peierls phase onto the
atomic wave function. This phase is analogous
to the Aharanov-Bohm phase experienced by a
charged particle in a magnetic field (3–5). These
gauge fields, first synthesized in Bose-Einstein
condensates (6), have recently allowed for the
realization of the Harper-Hofstadter Hamiltonian
in ultracold bosonic two-dimensional (2D) lattice
gases (7, 8), whereas, following a complementary
route based on accurate engineering of the single-
particle Hamiltonian, Chern insulators have been
also realized (9) in systems that lack a netmagnetic
field (10). Theseworks are paving theway toward
the investigation of different forms of bulk topo-
logical matter in atomic systems (5, 11). In the
presentwork, we are instead interested in the edge
properties of fermionic systems under the effects
of a synthetic gauge field. Fermionic edge states

are a fundamental feature of 2D topological
states of matter, such as quantumHall and chiral
spin liquids (12, 13). Moreover, they are robust
against changing the geometry of the system and
can be observed even on Hall ribbons (14). In
addition, fermionic edge states offer appealing
prospects in quantum science, such as the reali-
zation of robust quantum information buses (15),
and they are ideal starting points for the reali-
zation of non-Abelian anyons akin to Majorana
fermions (16, 17).
Here we report the observation of chiral edge

states in a system of neutral fermions subjected
to a synthetic magnetic field. We exploit the high
level of control in our system to investigate the
emergence of chirality as a function of the
Hamiltonian couplings. These results have been
enabled by an innovative approach, proposed in
(18), where an internal (nuclear spin) degree of
freedom of the atoms is used to encode a lattice
structure lying in an “extra dimension” (14), pro-
viding direct access to edge physics. We synthe-
size a system of fermionic particles in an atomic
Hall ribbon of tunable width pierced by an ef-
fective gauge field. One dimension is realized by
an optical lattice, which induces a real tunneling
t between different sites along direction x̂
(Fig. 1A). The different internal spin states are
coupled by a two-photon Raman transition, which
provides a coherent controllable coupling Weiϕx

between different spin components. This can be
interpreted as a complex tunneling amplitude be-
tween adjacent sites of an extra-dimensional lattice
along a synthetic direction m̂ (14, 19). Furthermore,
the phase imprinting laid out by theRamanbeams
amounts to the synthesis of an effective magnetic
field for effectively charged particles (4) with flux
ϕ=2p (in units of the magnetic flux quantum)
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Observation of chiral edge states
with neutral fermions in synthetic
Hall ribbons
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Chiral edge states are a hallmark of quantum Hall physics. In electronic systems,
they appear as a macroscopic consequence of the cyclotron orbits induced by a
magnetic field, which are naturally truncated at the physical boundary of the sample.
Here we report on the experimental realization of chiral edge states in a ribbon
geometry with an ultracold gas of neutral fermions subjected to an artificial gauge
field. By imaging individual sites along a synthetic dimension, encoded in the nuclear
spin of the atoms, we detect the existence of the edge states and observe the
edge-cyclotron orbits induced during quench dynamics. The realization of fermionic
chiral edge states opens the door for edge state interferometry and the study of
non-Abelian anyons in atomic systems.

U
ltracold atoms in optical lattices represent
an ideal system for studying the physics of
condensed matter problems in a fully tun-
able, controllable environment (1, 2). One
of the notable achievements in recent years

has been the realization of synthetic background
gauge fields, akin to magnetic fields in electronic
systems. By exploiting light-matter interaction, it
is possible to imprint a Peierls phase onto the
atomic wave function. This phase is analogous
to the Aharanov-Bohm phase experienced by a
charged particle in a magnetic field (3–5). These
gauge fields, first synthesized in Bose-Einstein
condensates (6), have recently allowed for the
realization of the Harper-Hofstadter Hamiltonian
in ultracold bosonic two-dimensional (2D) lattice
gases (7, 8), whereas, following a complementary
route based on accurate engineering of the single-
particle Hamiltonian, Chern insulators have been
also realized (9) in systems that lack a netmagnetic
field (10). Theseworks are paving theway toward
the investigation of different forms of bulk topo-
logical matter in atomic systems (5, 11). In the
presentwork, we are instead interested in the edge
properties of fermionic systems under the effects
of a synthetic gauge field. Fermionic edge states

are a fundamental feature of 2D topological
states of matter, such as quantumHall and chiral
spin liquids (12, 13). Moreover, they are robust
against changing the geometry of the system and
can be observed even on Hall ribbons (14). In
addition, fermionic edge states offer appealing
prospects in quantum science, such as the reali-
zation of robust quantum information buses (15),
and they are ideal starting points for the reali-
zation of non-Abelian anyons akin to Majorana
fermions (16, 17).
Here we report the observation of chiral edge

states in a system of neutral fermions subjected
to a synthetic magnetic field. We exploit the high
level of control in our system to investigate the
emergence of chirality as a function of the
Hamiltonian couplings. These results have been
enabled by an innovative approach, proposed in
(18), where an internal (nuclear spin) degree of
freedom of the atoms is used to encode a lattice
structure lying in an “extra dimension” (14), pro-
viding direct access to edge physics. We synthe-
size a system of fermionic particles in an atomic
Hall ribbon of tunable width pierced by an ef-
fective gauge field. One dimension is realized by
an optical lattice, which induces a real tunneling
t between different sites along direction x̂
(Fig. 1A). The different internal spin states are
coupled by a two-photon Raman transition, which
provides a coherent controllable coupling Weiϕx

between different spin components. This can be
interpreted as a complex tunneling amplitude be-
tween adjacent sites of an extra-dimensional lattice
along a synthetic direction m̂ (14, 19). Furthermore,
the phase imprinting laid out by theRamanbeams
amounts to the synthesis of an effective magnetic
field for effectively charged particles (4) with flux
ϕ=2p (in units of the magnetic flux quantum)
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Probing the relaxation towards equilibrium in an
isolated strongly correlated one-dimensional
Bose gas
S. Trotzky1,2,3*, Y-A. Chen1,2,3, A. Flesch4*, I. P. McCulloch5, U. Schollwöck1,6, J. Eisert6,7,8

and I. Bloch1,2,3

The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The
maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum
many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of
a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice,
we follow its dynamics in terms of quasi-local densities, currents and coherences—all showing a fast relaxation towards
equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the
experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics
runs for longer times than present classical algorithms can keep track of.

Ultracold atoms in optical lattices provide highly controllable
quantum systems allowing one to experimentally probe
various quantum many-body phenomena. In this way,

ground state properties of Hamiltonians that play a fundamental
role in the condensed matter context have been investigated under
precisely tunable conditions1–3. Features that are even harder
to probe in actual condensed matter materials or to simulate
in numerical studies are dynamical ones, including dynamical
properties emerging in adiabatic sweeps4 and in systems far from
equilibrium5–11. In this respect, for example, the quench from a
shallow to a deep optical lattice6–8 and the phase dynamics emerging
after splitting a one-dimensional Bose liquid12 have previously been
studied experimentally.

Here, we report on the direct observation of relaxation
dynamics in an interacting many-body system using ultracold
atoms in an optical lattice. Starting with a patterned density
with alternating empty and occupied sites in isolated Hubbard
chains, we suddenly switched on the tunnel coupling along these
chains and measured the emerging dynamics in terms of quasi-
local densities, currents and coherences. Both the initial state
preparation and the detection were realized using a bichromatic
optical superlattice13,14. For awide range of (repulsive) inter-particle
interactions, we find a fast relaxation of the measured observables
to steady-state values, where the timescale of the relaxation cannot
be attributed to a classical ensemble average. We find the time
evolution of the quasi-local densities and currents to initially
follow a power law with an exponent being significantly larger
than that expected for free or hardcore bosons. For short times,
we compare the experimental results to time-dependent density-
matrix renormalization group simulations (t -DMRG, for a review

1Fakultät für Physik, Ludwig-Maximilians-Universität, 80798 München, Germany, 2Max-Planck Institut für Quantenoptik, 85748 Garching, Germany,
3Institut für Physik, Johannes Gutenberg-Universität, 54099 Mainz, Germany, 4Institute for Advanced Simulation and JARA, Forschungszentrum Jülich,
52425 Jülich, Germany, 5School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, 6Institute for Advanced Study
Berlin, 14193 Berlin, Germany, 7Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany, 8Dahlem Center for Complex
Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany. *e-mail: stefan.trotzky@lmu.de; a.flesch@fz-juelich.de.

see refs 15,16 and references therein) of the Hamiltonian dynamics
without free parameters, further developing the ideas of previous
numerical studies17,18.

Concept of the experiments
We consider a one-dimensional chain of lattice sites coupled by a
tunnel coupling J and filled with repulsively interacting bosonic
particles. In the tight-binding approximation, the Hamiltonian
takes the formof a one-dimensional Bose–Hubbardmodel3,19

Ĥ =
X

j


�J

�
â†
j âj+1 +h.c.

�
+ U

2
n̂j(n̂j �1)+ K

2
n̂j j2

�

where âj(â†
j ) annihilates (creates) a particle on site j, n̂j = â†

j âj reflects
the number of atoms on site j and U is the on-site interaction
energy. The parameter K = m!2d2 (m is the particle mass, d the
lattice spacing) describes an external harmonic trap with trapping
frequency!'2⇡⇥61Hz, present in the experiments.

The experimental sequence is described as follows (Fig. 1a):
(1) at t = 0, the system is initialized in a density wave represented
as a state vector | (t = 0)i = | ...,1,0,1,0,1,...i, such that only
lattice sites with an even site index are occupied and no tunnel
coupling is present along the chain. (2) After the quench to a
distinct set of positive parameters J ,U andK , the system follows the
non-equilibriumdynamics of the aboveHamiltonian Ĥ . (3) Finally,
the tunnel coupling is suppressed again and the properties of the
evolved state vector | (t )i are read out.

We started our experiments by loading a Bose–Einstein
condensate of about 45⇥ 103 87Rb atoms in the |F = 1,mF = �1i
Zeeman level into a three-dimensional optical lattice formed by
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Figure 2 | Relaxation of the local density for different interaction strengths. We plot the measured traces of the odd-site population nodd(t) for four
different interaction strengths U/J (circles). The solid lines are ensemble-averaged results from t-DMRG simulations without free parameters. The dashed
lines represent simulations including next-nearest neighbour hopping with a coupling matrix element JNNN/J ' 0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d)
calculated from the single-particle band structure.

lattices, which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbour hopping term
�JNNN

P
j(â

†
j âj+2 + h.c.) in the t -DMRG simulations we obtain

quantitative agreement with the experimental data (dashed line
in Fig. 2). For larger values of U/J and correspondingly deeper
lattices, the tight-binding approximation is valid. For U/J ⇠> 10
(Fig. 2d), larger deviations are found. We attribute these to residual
inter-chain tunnelling and non-adiabatic heating. Both of these
effects become more relevant for larger values of U/J , because we
adjust this ratiomainly by tuning the tunnel coupling J .

The results of the density measurements can be related to the
expectations for an infinite chain with K = 0. There, the time
evolution can be calculated analytically in the case of either non-
interacting bosons (U/J = 0) or infinite interactions (U/J ! 1;
refs 17,18). These limiting cases can be understood well through
the mechanism of local relaxation by ballistically propagating
excitations. The on-site densities follow zeroth order Bessel
functions describing oscillations that are asymptotically dampened
by a power law with exponent �0.5. The damping we observe in
the interacting system, however, is much faster. As we will show
below, the dynamics is approximated well by a power law with an
exponent<�0.5 for the first tunnel oscillations. This behaviour has
also been found in t -DMRG simulations of homogeneous Hubbard
chains with finite interactions17,18. The exact origin of this enhanced
relaxation in the presence of strong correlations constitutes one of
themajor open problems posed by the results presented here.

Measurements of quasi-local currents
Employing the bichromatic superlattice, we were also able to detect
themagnitude and direction of quasi-local density currents. Instead
of raising the short lattice at the end of step (2), we ramped up the

long lattice to suppress the tunnel coupling through every second
potential barrier in the chain (Fig. 3a). At the same time, we set
the short lattice to a fixed value to obtain always the same value of
(U/J )DW ' 0.2 in the emerging double wells. By tuning the relative
phase between the long and short lattice we were able to selectively
couple sites with index (2j,2j + 1) (‘even–odd’, j integer) or
(2j�1,2j) (‘odd–even’).We recorded the time evolution in the now
isolated double wells using the same final read-out scheme as for the
densities (see Fig. 3b). We find sinusoidal tunnel oscillations which
dephase only slowly and decrease in amplitude with increasing
relaxation time t . The phase � and amplitude A of these oscillations
were extracted from a fit of a sine wave to the data and are plotted
in Fig. 3c as a function of the relaxation time for U/J = 5.16(7).
The phase contains the information about the direction of the mass
flow, whilst the amplitude is a combination of the local population
imbalance and the strength of the local current.

We find � to evolve linearly in time, giving strong evidence that
the excitations in the system expand approximately ballistically,
as suggested in refs 17,18. Furthermore, its value does not change
when coupling even–odd or odd–even sites, indicating the absence
of centre-of-mass motion in the system. The amplitude A, on
the other hand, decays to zero on the same timescale as the
oscillations in the local densities dampen out—in fact the quantities
(1 ± A)/2 provide envelopes to the traces nodd and neven (see
Supplementary Information). On short timescales, 0< 4Jt/h< 3,
we find the decay of the amplitude—and therefore also that of
the density oscillations—to follow an approximate power law/t�↵

with ↵ =0.86(7). This behaviourmight change for longer evolution
times, where no significant amplitude was measurable. We extract
the power-law coefficients ↵ for a wide range of U/J (right inset to
Fig. 3c). In all cases, the absolute values of the coefficients are larger
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Probing the relaxation towards equilibrium in an
isolated strongly correlated one-dimensional
Bose gas
S. Trotzky1,2,3*, Y-A. Chen1,2,3, A. Flesch4*, I. P. McCulloch5, U. Schollwöck1,6, J. Eisert6,7,8

and I. Bloch1,2,3

The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The
maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum
many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of
a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice,
we follow its dynamics in terms of quasi-local densities, currents and coherences—all showing a fast relaxation towards
equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the
experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics
runs for longer times than present classical algorithms can keep track of.

Ultracold atoms in optical lattices provide highly controllable
quantum systems allowing one to experimentally probe
various quantum many-body phenomena. In this way,

ground state properties of Hamiltonians that play a fundamental
role in the condensed matter context have been investigated under
precisely tunable conditions1–3. Features that are even harder
to probe in actual condensed matter materials or to simulate
in numerical studies are dynamical ones, including dynamical
properties emerging in adiabatic sweeps4 and in systems far from
equilibrium5–11. In this respect, for example, the quench from a
shallow to a deep optical lattice6–8 and the phase dynamics emerging
after splitting a one-dimensional Bose liquid12 have previously been
studied experimentally.

Here, we report on the direct observation of relaxation
dynamics in an interacting many-body system using ultracold
atoms in an optical lattice. Starting with a patterned density
with alternating empty and occupied sites in isolated Hubbard
chains, we suddenly switched on the tunnel coupling along these
chains and measured the emerging dynamics in terms of quasi-
local densities, currents and coherences. Both the initial state
preparation and the detection were realized using a bichromatic
optical superlattice13,14. For awide range of (repulsive) inter-particle
interactions, we find a fast relaxation of the measured observables
to steady-state values, where the timescale of the relaxation cannot
be attributed to a classical ensemble average. We find the time
evolution of the quasi-local densities and currents to initially
follow a power law with an exponent being significantly larger
than that expected for free or hardcore bosons. For short times,
we compare the experimental results to time-dependent density-
matrix renormalization group simulations (t -DMRG, for a review

1Fakultät für Physik, Ludwig-Maximilians-Universität, 80798 München, Germany, 2Max-Planck Institut für Quantenoptik, 85748 Garching, Germany,
3Institut für Physik, Johannes Gutenberg-Universität, 54099 Mainz, Germany, 4Institute for Advanced Simulation and JARA, Forschungszentrum Jülich,
52425 Jülich, Germany, 5School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, 6Institute for Advanced Study
Berlin, 14193 Berlin, Germany, 7Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany, 8Dahlem Center for Complex
Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany. *e-mail: stefan.trotzky@lmu.de; a.flesch@fz-juelich.de.

see refs 15,16 and references therein) of the Hamiltonian dynamics
without free parameters, further developing the ideas of previous
numerical studies17,18.

Concept of the experiments
We consider a one-dimensional chain of lattice sites coupled by a
tunnel coupling J and filled with repulsively interacting bosonic
particles. In the tight-binding approximation, the Hamiltonian
takes the formof a one-dimensional Bose–Hubbardmodel3,19

Ĥ =
X

j


�J

�
â†
j âj+1 +h.c.

�
+ U

2
n̂j(n̂j �1)+ K

2
n̂j j2

�

where âj(â†
j ) annihilates (creates) a particle on site j, n̂j = â†

j âj reflects
the number of atoms on site j and U is the on-site interaction
energy. The parameter K = m!2d2 (m is the particle mass, d the
lattice spacing) describes an external harmonic trap with trapping
frequency!'2⇡⇥61Hz, present in the experiments.

The experimental sequence is described as follows (Fig. 1a):
(1) at t = 0, the system is initialized in a density wave represented
as a state vector | (t = 0)i = | ...,1,0,1,0,1,...i, such that only
lattice sites with an even site index are occupied and no tunnel
coupling is present along the chain. (2) After the quench to a
distinct set of positive parameters J ,U andK , the system follows the
non-equilibriumdynamics of the aboveHamiltonian Ĥ . (3) Finally,
the tunnel coupling is suppressed again and the properties of the
evolved state vector | (t )i are read out.

We started our experiments by loading a Bose–Einstein
condensate of about 45⇥ 103 87Rb atoms in the |F = 1,mF = �1i
Zeeman level into a three-dimensional optical lattice formed by
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Mott insulator BEC

quenchCan we measure entanglement growth (& purity)? 

A. J. Daley, HP, J. Schachenmayer, P. Zoller PRL 2012; NJP 2013
entanglement growth: A.M. Läuchli and C. Kollath, J. Stat. Mech. 2008, P05018 (2008).

 Efficiently (?)
 With the available tools in cold atom experiments



Cold Atoms in Optical Lattices

… developing new measurement 
protocols in AMO

… based on new tools: 
quantum gas microscope

entangled stateproduct state

en
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quantum gas & quantum simulation

Measuring Entanglement

Special Topic 1:



Measuring Entanglement Entropy

A. LäuchliA. Daley J. Schachenmayer

Pittsburgh/Strathclyde UIBK - ITPUIBK-IQOQI

H. Pichler
→ ITAMP

A.J. Daley, H. Pichler, J. Schachenmayer, PZ, PRL (2012).
H. Pichler, L. Bonnes, A. J. Daley, A. M. Läuchli and PZ, NJP (2013).

• theory:

• experiment
R. Islam, M. Greiner et al., Nature (2015)
A.M. Kaufmann, M. Greiner et al., arXiv 2016

bosons  
[& fermions]see also: C. Moura Alves and D. Jaksch, PRL (2004)

Quench
Mott insulator
Even Odd

Initialize Many-body
interference
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Controlled few-atom systems &  quantum gas microscope



Entanglement Measures

• For pure state of the total system
  Product state of A and B 

reduced density matrix 

  Entangled state of A and B � { }
product state | i = | Ai ⌦ | Bi, then

2

⇢A = trB{⇢} = | Ai ⌦ h A|

| i 6= | Ai ⌦ | Bi

• Measurement of bipartite entanglement

SV N (⇢A) = �tr{⇢A log ⇢A} = 0

 L. Amico, R. Fazio, A. Osterloh and V. Vedral, RMP (2008)
J. Eisert, M. Cramer and M. B. Plenio, RMP (2010)
P. Calabrese, J. Cardy and B. Doyon, JPA (2009)
I. Peschel and V. Eisler, JPA (2009)
O. Gühne, and G. Tóth, Phys. Rep. (2009).

Reviews:

A B

SV N (⇢A) > 0



Entanglement Measures

A B

• Another measure is the Rényi entropy of order n, which bounds the von 
Neumann entropy 
 
 
 
and also measures the concurrence

Sn(⇢A) =
1

1� n
log tr{⇢nA}  SV N (⇢A)

• SV N (⇢) [= lim
n!1

Sn(⇢)]

• SV N (⇢) � S2(⇢)

• SV N (⇢) � 2S2(⇢)� S3(⇢)

Properties:



Measuring Rényi Entropies … the Challenge

• Rényi entropy of order n

Reduced state

• Mixed states: inequalities 
                       bounds 

F. Mintert et al., Phys. Rev. Lett. 95, 260502 (2005). 

Sn(Ω) < Sn(ΩÆ) ! E(Ω) > 0
q

2(Tr{Ω2}°Tr{Ω2
Æ}) ∑ c(Ω) ∑

q
2(1°Tr{Ω2

Æ})

Sn(ΩÆ) ¥ 1

1°n
logtr{Ωn

Æ}

entanglement spectrum

ΩÆ = TrHØ
{Ω} =

X

k
∏k |¡kih¡k |

L sites N-L sites

Can we measure              ?



Protocols to measure Rényi entropies

27beamsplitter & microscope

• Quantum Tomography of the density matrix
however, … 



Quantum Tomography to measure Ω

• expensive: many copies
• tomography for itinerant particles (?)

• [Gaussian states]
• [photons]



Protocols to measure Rényi entropies

• a quantum information perspective

29

A. K. Ekert et al. PRL 2002

• … and a much more practical protocol

quantum circuits / computers

beamsplitter & microscope

Bell state measurements

bosons (& fermions) in 1D/2D 
optical lattices
hard core bosons = spins in ion traps

A. Daley et al, PRL 2012
C. Moura Alves, D. Jaksch, PRL 2004
F. Mintert et al., PRL 2005

copy 1

copy 2

measuring nonlinear functionals of Ω

Ω≠Ω



Renyi entropy Measurement of expectation value

Quantum Information Perspective

• Nonlinear functionals of a quantum state can be measured by measuring 
the expectation value of the unitary operator         on the n-fold copy of the 
state

30

V (n)

A. K. Ekert, C. Moura Alves, D. K. L. Oi, M. Horodecki, P. Horodecki, and L. C. Kwek, PRL (2002). 

V (n) |√1i . . . |√ni= |√ni |√1i . . . |√n°1i

shift (or swap) operator

Tr{Ωn} = Tr{V (n)Ω≠N } ¥ hV (n)i

n copies
Vn

✓unitary
✓ for n=2 swap is also hermitian



Quantum Information Perspective

• Nonlinear functionals of a quantum state can be measured by measuring 
the expectation value of the unitary operator         on the n-fold copy of the 
state

31

V (n)

V (n) |√1i . . . |√ni= |√ni |√1i . . . |√n°1i

Tr{Ωn} = Tr{V (n)Ω≠N } ¥ hV (n)i

Example n=2:

tr{V (2)⇢1 ⌦ ⇢2} = tr

8
<

:V (2)
X

ijkl

⇢(1)ij ⇢(2)kl |ii hj|⌦ |ki h`|

9
=

;

= tr{⇢1⇢2}

V (2)

|ii1

|ki2
swap operator

V (2) |ii1 ⌦ |ki2 = |ki1 ⌦ |ii2Ω1 ≠Ω1

expectation value

✓unitary
✓ for n=2 swap is also hermitian



Quantum Circuit

• Measurement via quantum network via ancilla qubit and controlled gate 
between ancilla and the copies of the system.

32

Ω≠Ω . . .≠Ω V (n)

H H|0i
'

interference pattern

'
visibility ª hV (n)i

Ramsey interferometer:

quantum circuit for expectation

value of unitary operator hV (2)i

auxiliary
particle

V (n) |√1i . . . |√ni= |√ni |√1i . . . |√n°1i

Tr{Ωn} = Tr{V (n)Ω≠N } ¥ hV (n)i

A. K. Ekert, C. Moura Alves, D. K. L. Oi, M. Horodecki, P. Horodecki, and L. C. Kwek, PRL (2002). 

… we need a quantum computer (?)



Protocols to measure Rényi entropies

• a quantum information perspective

33

A. K. Ekert et al. PRL 2002

• … and a much more practical protocol

quantum circuits / computers

beamsplitter & microscope

Bell state measurements

bosons (& fermions) in 1D/2D 
optical lattices
hard core bosons = spins in ion traps

A. Daley et al, PRL 2012
C. Moura Alves, D. Jaksch, PRL 2004
F. Mintert et al., PRL 2005

copy 1

copy 2

measuring nonlinear functionals of Ω

Ω≠Ω



Measurement of Renyi Entropies (n=2)

• SWAP operator

boson occupation numbers

copy 1

copy 2

Tr{Ω2} = Tr{V (2)Ω≠Ω} ¥ hV (2)i

V (2) |n1i |n2i= |n2i |n1i
V (2)

Measure expectation values of projection operators onto (anti)symmetric 
subspace (with respect to exchange of copies)

Theory

Remarks: • product of local operations V (2) =
Y

i
V (2,i )

antisymmetric subspace

V (2) = (+1)P+ + (°1)P°

symmetric (copy 1 ⟷ 2)

V (2) ∏=+1,°1•        hermitian & unitary: eigenvalues       



(quantum) measurement of       is simply a measurement of occupation 
numbers (modulo 2) after a 50/50 beam splitter.

• identify symmetric and antisymmetric subspaces of the SWAP operator

copy 1

copy 2
: swap operator

eigenstates eigenvalue

• 50/50 beamsplitter

1 2 1 2

Theory

This leads to a protocol, where beam splitter operations and a microscope 
are sufficient. Note: protocol can be generalized to n



“The Recipe”: for n=2 (Bosons)

• Renyi entropy 

Eigenvalues:2 copies



“The Recipe”: for n=2 (Bosons)

• Renyi entropy 

Bosons in 1D optical lattices:

• freeze the motion in the axial direction 



“The Recipe”: for n=2 (Bosons)

• Renyi entropy 

Bosons in 1D optical lattices:

• freeze the motion in the axial direction 

• tunneling between the two copies using a superlattice 

(turn interaction off!)

J

single part
icle

 

operat
ions 



“The Recipe”: for n=2 (Bosons)

• Renyi entropy 

Bosons in 1D optical lattices:

• freeze the motion in the axial direction 

• tunneling between the two copies using a superlattice 

(turn interaction off!)

• measure site resolved atom number

quantum gas  

micro
sco

pe



“The Recipe”: for n=2 (Bosons)

• Renyi entropy 

Bosons in 1D optical lattices:

• freeze the motion in the axial direction 

• tunneling between the two copies using a superlattice 

(turn interaction off!)

• measure site resolved atom number
• repeat



4125 

Example: Detecting a Superfluid (two sites)!

Copy 2!

Copy 1!
SF 1! SF 2!

Possible read outs (after beam-splitter):!

Probabilities:!

n = odd!

n = even!

total purity first site purity



4226 

Example: Detecting a Superfluid (two sites)!

Copy 2!

Copy 1!
SF 1! SF 2!

Possible read outs (after beam-splitter):!

Probabilities:!

Pure!

n = odd!

n = even!



27 

Example: Detecting a Superfluid (two sites)!

Copy 2!

Copy 1!
SF 1! SF 2!

Possible read outs (after beam-splitter):!

Probabilities:!

Mixed!

n = odd!

n = even!



• Entanglement in the ground state of the Bose-Hubbard model

Bose-Hubbard Hamiltonian

overall purity constant



45

Theory: Quantum Quenches

Softcore bosons, small system (N=M=8): 
• Increasing entanglement, saturates (thermalization) 

Hardcore bosons (M=8) 
• Initial growth of entanglement, then oscillations 
    (integrable system)

• Bose-Hubbard U/J=10 to U/J=1 quench

Softcore bosons Hardcore bosons

• Odd sites initially filled

tJ

S

S2

SV N

0

2

4

0 20 40 60 80 100

softcore

hardcore

tDMRG calculations by  
A Daley & J Schachenmayer



arXiv: 1603.04409 

Quench

1-11-1-1-1

Expand and Measure Local and Global PurityExpand and Measure Local Occupation Number
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Remarks

• number of measurements for a given precision 

• r

• role of imperfections …

47

S4

S3

S2

tJ

100

102

104

0 1 2 3

�2# • Larger n requires more measurements for 
    same precision 

• However, combination of n=2 and higher n 
   gives stronger bound on von Neumann entropy, 
   e.g., (dashed line in measurement)

SV N (⇢) � 2S2(⇢)� S3(⇢)

• Higher order Renyi entropies:

• Fermions: same experimental procedure, different interpretation of 
measurement record 

Extensions

U F T
n : a j ,k ! 1

p
n

nX

`=1
a j ,`ei 2ºn

n (k°1)(`°1)

…

n copies



Measuring the Entanglement Spectrum

• Ramsey interferometry:

H. Pichler, G. Zhu, A. Seif, PZ, and M Hafezi, arXiv May 2016 

UIBK-IQOQI

H. Pichler
→ ITAMP

JQI, Univ. of Maryland

A SeifG ZhuM. Hafezi

Entanglement spectrum

TrΩn
Æ =

X

k
∏n

k



From Static to Dynamical Gauge Fields

Special Topic 2:

Lattice Gauge Theory

photons
(gauge field)

electrons 
(matter field)

� =

ˆ
d2 ~f · ~r⇥ ~A

flux

atoms

Synthetic Gauge Fields [Static]

• condensed matter

• high-energy physics

V
Synthetic



• Gauge theories on a discrete lattice structure 

• Fundamental gauge symmetries: standard model (every force has a 
gauge boson)

… lattice gauge theories [in particle physics]

50

K. Wilson 1974

non-perturbative approach to 
fundamental theories of matter 
(e.g. QCD)
→ classical statistical mechanics

quarks and gluons
lattice

a

achievements issues
Sign problem in its various flavors:
• finite density QCD (=fermions)
• real time evolution

• first evidence of quark-gluon plasma
• ab initio estimate of proton mass
• entire hadronic spectrum

Classical Monte Carlo simulations:

Quantum simulation (with atoms)? … toy models & simple phenomena
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• Classical Physics

• topology

• Quantum Physics
Landau levels

• Quantum Hall effect
• Fractional Quantum Hall effect

E

Condensed Matter Physics

nr °nl

Charged Particle in Static Magnetic Field

X ~B

cyclotron orbits in B-field

edge states

“skipping orbits"



Charged Particle in Static Magnetic Field

52

• … on a Lattice

lattice 
spacing

cyclotron 
radius



Hofstadter’s Butterfly

energy
flu

x

Æ= 0

Æ= 1

Landau levels

Charged Particle in Static Magnetic Field

53

• … on a Lattice
D. Hofstadter

particles hopping around a 
plaquette acquire a phase 2ºÆ

PHYSICAL REVIEW B VOLUME 14, NUMBER 6 15 SEPTEMBER 1976

Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields*

Douglas R. Hofstadter~
Physics Department, University of Oregon, Eugene, Oregon 97403

(Received 9 February 1976)

An effective single-band Hamiltonian representing a crystal electron in a uniform magnetic field is constructed
from the tight-binding form of a Bloch band by replacing hk by the operator p —eA/c. The resultant
Schrodinger equation becomes a finite-difference equation whose eigenvalues can be computed by a matrix
method. The magnetic flux which passes through a lattice cell, divided by a flux quantum, yields a
dimensionless parameter whose rationality or irrationality highIy influences the nature of the computed
spectrum. The graph of the spectrum over a wide range of "rational" fields is plotted. A recursive structure is
discovered in the graph, which enables a number of theorems to be proven, bearing particularly on the
question of continuity. The recursive structure is not unlike that predicted by Azbel', using a continued
fraction for the dimensionless parameter. An iterative algorithm for deriving the clustering pattern of the
magnetic subbands is given, which follows from the recursive structure. From this algorithm, the nature of the
spectrum at an "irrational" field chn be deduced; it is seen to be an uncountable but measure-zero set of
points (a Cantor set). Despite these-features, it is shown that the graph is continuous as the magnetic field
varies. It is also shown how a spectrum with simplified properties can be derived from the rigorously derived
spectrum, by introducing a spread in the field values. This spectrum satisfies all the intuitively desirable
properties of a spectrum. The spectrum here presented is shown to agree with that predictediby A. Rauh in a
completely different model for crystal electrons in a magnetic field. A new type of magnetic "superlattice" is
introduced, constructed so that its unit cell intercepts precisely one quantum of flux. It is shown that this cell
represents the periodicity of solutions of the difference equation. It is also shown how this superlattice allows
the determination of the wave function at nonlattice sites. Evidence is offered that the wave functions
belonging to irrational fields are everywhere defined and are continuous in this model, whereas those
belonging to rational fields are only defined on a discrete set of points. A method for investigating these
predictions experimentally is sketched.

I. INTRODUCTION II. DERIVATION OF THE DIFFERENCE EQUATION

The problem of Bloch electrons in magnetic
fields is a very peculiar problem, because it is
one of the very few places in physics where the
difference between rational numbers and irrational
numbers makes itself felt."Common sense tells
us that there can be no physical effect stemming
from the irrationality of some parameter, because
an arbitrarily small change in that parameter
would make it rational —and this would create
some physical effect with the property of being
everywhere discontinuous, which is unreasonable.
The only alternative, then, is to show that a theory
which apparently distinguishes between rational
and irrational values of some parameter does so
only in a mathematical sense, and yields physical
observables which are nevertheless continuous. It
is the purpose of this paper to present a method
which effects such a reconciliation of "rational"
and "irrational" magnetic fields. The method is
illustrated in a maximally simple model of the
physical situation, but the ideas which arise are,
it is to be hoped, applicable to more realistic
models of the physical situation.

Briefly, then, the model involves a two-dimen-
sional square lattice of spacing a, immersed in a
uniform magnetic field H perpendicular to it. We
restrict our considerations to what happens to a
single Bloch band when the field is applied. This
is one strong simplifying feature of the model; the
next is that we postulate the following tight-bind-
ing form for the Bloch energy function:

W(k) = 2EO(cosk, a+ cosk a) .
Perhaps the most difficult step to justify on phys-
ical grounds is the following one, which I shall
refer to as the "Peierls substitution'": we replace
Sk in the above function by the operator p —e A/c
(A being the vector potential), to create an opera-
tor out of W(k), which we then treat as an effective
single-band Hamiltonian. Work to justify this sub-
stitution has been done. 4 '
When this substitution is made, the effective
Hamiltonian is seen to contain translation opera-
tors exp(ap, /W) and exp(ap„/0). Depending on the
gauge chosen, there are, in addition, certain
phase factors dependent on the magnetic field

14 2239

flux
� =

ˆ
d2 ~f · ~B



Static vs. Dynamical Gauge Fields on a Lattice: U(1)

54

• c-number / static gauge fields

“synthetic gauge fields”

Review: J. Dalibard et al. Rev. Mod. Phys. (2011)
 

� =

ˆ
d2 ~f · ~r⇥ ~A

flux

atoms

x y

H = �t †
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ei'xy 
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+ h.c.

'
xy
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ˆ
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d~l · ~A

U(1) (abelian)

phase



Static Synthetic Gauge Fields with Cold Atoms
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• c-number / static synthetic gauge fields for atoms

D. Jaksch and P. Zoller, New J. Phys. 5, (2003).

56.4

Figure 2. Optical lattice set-up. Open (closed) circles denote atoms in state
|g⟩ (|e⟩). (a) Hopping in the y-direction is due to kinetic energy and described
by the hopping matrix element J y being the same for particles in states |e⟩ and
|g⟩. Along the x-direction hopping amplitudes are due to the additional lasers.
(b) Trapping potential in the x-direction. Adjacent sites are set off by an energy !
because of the acceleration or a static inhomogeneous electric field. The laser "1

is resonant for transitions |g⟩ ↔ |e⟩ while "2 is resonant for transitions |e⟩ ↔ |g⟩
due to the offset of the lattice sites. Because of the spatial dependence of "1,2

atoms hopping around one plaquette get phase shifts of 2πα = −ϕm +0+ϕm+1 +0
where ϕm = mqλ/4π as indicated in (a).

for a number of studies related to the behaviour of charged particles in a 2D configuration subject
to magnetic and electric fields and also to study strongly interacting and thus strongly correlated
systems. Furthermore, it might be possible to extend this model to different geometries of optical
lattices.

In this work we will concentrate on a possible set-up required to implement the effective
magnetic field in an optical lattice. We will discuss in detail the laser set-up which leads to
an effective magnetic flux through the optical lattice, and calculate the corresponding matrix
elements in section 2. We also show that it is possible to reach each point within the Hofstadter
butterfly apart from a negligibly small region around α = 0 with the proposed set-up. In section 3
we suggest one possibility of measuring some of the basic properties of the Hofstadter butterfly
and discuss the limitations on the resolution for measuring the energy bands. We also give a brief
account of the interaction effects. Finally we conclude with a short outlook on how the present
set-up could be extended in section 4. While the focus of the present work is the derivation of
the single-particle terms in the Hubbard Hamiltonian mimicking a strong magnetic field, we see
as one of the main motivations the extension to strongly correlated many-atom systems in strong
(effective) magnetic fields.

2. Set-up and model

In this section we discuss the experimental set-up required to produce a Hofstadter butterfly for
neutral atoms. We first present the optical lattice set-up, then introduce an additional acceleration
or static electric field and finally describe in detail the additional lasers required for our purpose.

New Journal of Physics 5 (2003) 56.1–56.11 (http://www.njp.org/)

Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices

M. Aidelsburger,1,2 M. Atala,1,2 M. Lohse,1,2 J. T. Barreiro,1,2 B. Paredes,3 and I. Bloch1,2
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(Received 1 August 2013; published 28 October 2013)

We demonstrate the experimental implementation of an optical lattice that allows for the generation of

large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted

tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes.

Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of

charged particles in a magnetic field. We determine the local distribution of fluxes through the observation

of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the

Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments,

our system naturally realizes the time-reversal-symmetric Hamiltonian underlying the quantum spin Hall

effect; i.e., two different spin components experience opposite directions of the magnetic field.

DOI: 10.1103/PhysRevLett.111.185301 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm, 73.20.!r

Ultracold atoms in optical lattices constitute a unique
experimental setting to study condensed matter
Hamiltonians in a clean and well-controlled environment
[1], even in regimes not accessible to typical condensed
matter systems [2]. Especially intriguing is their promising
potential to realize and probe topological phases of matter,
for example, by utilizing the newly developed quantum
optical high-resolution detection and manipulation tech-
niques [3,4]. One compelling possibility in this direction is
the quantum simulation of electrons moving in a periodic
potential exposed to a large magnetic field, described by
the Hofstadter-Harper Hamiltonian [5,6]. For a filled band
of fermions, this model realizes the paradigmatic example
of a topological insulator that breaks time-reversal
symmetry—the quantum Hall insulator. Moreover, the
atomic realization of time-reversal-symmetric topological
insulators based on the quantum spin Hall effect [7] prom-
ises new insights for spintronic applications.

The direct quantum simulation of orbital magnetism in
ultracold quantumgases is, however, hindered by the charge
neutrality of atoms, which prevents them from experiencing
a Lorentz force. Overcoming this limitation through the
engineering of synthetic gauge potentials is currently a
major topic in cold-atom research. Artificialmagnetic fields
were first accomplished using the Coriolis force in a rotat-
ing atomic gas [8,9] and later by inducing Berry’s phases
through the application of Raman lasers [10,11]. Recently,
staggered magnetic fields in optical lattices were achieved
using laser-induced tunneling in superlattice potentials [12]
or through dynamical shaking [13]. In one dimension,
tunable gauge fields have been implemented in an effective
‘‘Zeeman lattice’’ [14] and using periodic driving [15].
Furthermore, the free-space spin Hall effect was observed
usingRaman dressing [16].Despite intense research efforts,

2D optical lattices featuring topological many-body phases
have so far been beyond the reach of experiments.
In this Letter, we demonstrate the first experimental

realization of an optical lattice that allows for the genera-
tion of large tunable homogeneous artificial magnetic
fields. The technique is based on our previous work on
staggered magnetic fields [12]. The main idea is closely
related to early proposals by Jaksch and Zoller [17] and
subsequent work [18,19]. However, it does not rely on the
internal structure of the atom, which makes it applicable to
a larger variety of atomic species, including fermionic
atoms like 6Li and 40K. We use laser-assisted tunneling
in a tilted optical lattice through periodic driving with a
pair of far-detuned running-wave beams [20,21]. In con-
trast to techniques based on near-resonant laser beams,
heating of the atomic cloud due to spontaneous emission
is negligible [22]. The position dependence of the on-site
modulation introduced by the running-wave beams leads to
a spatially dependent complex tunneling amplitude.
Therefore, an atom hopping around a closed loop acquires
a nontrivial phase, which mimics an Aharonov-Bohm
phase. In our setup, we realize a uniform effective flux of
! ¼ !=2 per plaquette, whose value is fully tunable. We
study resonant laser-assisted tunneling in the tilted optical
potential and reveal the local distribution of fluxes by
partitioning the lattice into isolated four-site square pla-
quettes. Furthermore, we show that for two spin states with
opposite magnetic moments j"i and j#i, our coupling
scheme directly gives rise to a non-Abelian SU(2) gauge
field that results in opposite magnetic fields for j"i and j#i
particles. In the presence of such a gauge field, the tight-
binding Hamiltonian is time-reversal symmetric and cor-
responds precisely to the one underlying the quantum spin
Hall effect [7,23].

PRL 111, 185301 (2013)
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Synthetic [Classical] Gauge Fields: 
Fermionic Atoms

• Hall Ribbon
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experiment: L. Fallani, M. Ingusico et al., LENS theory: M. Dalmonte, M. Rider, PZ 
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Zeeman levels

L. Fallani M. Inguscio
LENS, Florence



Static vs. Dynamical Gauge Fields on Lattices: U(1)

particles hopping around a plaquette assisted by link degrees of freedom
• dynamical gauge fields
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Static vs. Dynamical Gauge Fields on Lattices: U(1)

particles hopping around a plaquette assisted by link degrees of freedom
• dynamical gauge fields
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Global vs. local (gauge) symmetries?
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• Global symmetries • Local (gauge) symmetries

Example: QED as gauge theory
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Invariant under global transformations
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Glossary of lattice gauge theories
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x

U
x,x+1

• set of fields acting on the vertices (matter fields) and on the links (gauge 
fields)

A (not too formal) definition of a lattice gauge theory

• set of generators, which define the gauge symmetry, and the physical 
Hilbert space

• Gauge invariant Hamiltonian:

[H,G
x

] = 0 8x Gauge (local) symmetries
Local conserved quantities
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QED with Spins [Quantum Link Model]

spin S
as quantum link 

U
x,x+1 ! S+

x,x+1 E
x,x+1 ! Sz

x,x+1

Spin S=½,1,...

quantum link carrying an electric flux

spin-1/2 spin-1

E = +1/2

E = �1/2

E = +1

E = 0

E = �1

electric flux

Uwe-Jens Wiese



QED with Spins [Quantum Link Model]
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spin S
as quantum link 

U
x,x+1 ! S+

x,x+1 E
x,x+1 ! Sz

x,x+1

Spin S=½,1,...

configurations: spin-1/2

electric flux

ice rule: two in, two outcharge = 0

⇢�r · E = 0

Gauss Law

ice

...

charge = +1

+



-

+

superpositions of configurations 
satisfying ice rule

⇢�r · E = 0

Gauss law as a constraint

“two in & two out"

… and similar for other / non-Abelian LGT

What is the Hamiltonian?
see below

Why ICE or SPIN ICE? 



 
Cold Atom Implementations  
of Dynamical Gauge Fields



The simplest (meaningful) quantum link model: 
1D Schwinger model
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AMO Implementation:
Bose-Fermi Mixtures in Optical Lattices

......

Boson (gauge field)

Fermion (quark)
“quantum spin ice coupled to matter”

Example 1:

D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U. J. Wiese, and P.Z., PRL 2012

string breaking



Schwinger Model: U(1) fermions + gauge bosons in 1D

• Hamiltonian: staggered fermions in 1D coupled to quantum link spin S

66
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Schwinger Model: U(1) fermions + gauge bosons in 1D

• Hamiltonian: staggered fermions in 1D coupled to quantum link spin S
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electric flux hopping staggered fermions

......

Fermion (quark)
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Schwinger Model: U(1) fermions + gauge bosons in 1D

• Hamiltonian: staggered fermions in 1D coupled to quantum link spin S

68

electric flux hopping staggered fermions

Staggered fermions: energy
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Schwinger Model: U(1) fermions + gauge bosons in 1D

• Hamiltonian: staggered fermions in 1D coupled to quantum link spin S
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electric flux hopping staggered fermions

0 1 2 ...

......

Staggered fermions: energy

mass gap
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Implementing the Hopping Term
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yx

H = �t †
x

S+
xy

 
y

+ h.c. + . . .

Dynamics:

• Abelian U(1)



Implementing the Hopping Term
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• Abelian U(1)
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Implementing “Gauss Constraint”
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H 1. Energy Constraints (as in cond mat)

H
micro

=U
X

x
G2

x + . . .

energy

U  (large)
G

x

|√i= 0

✓interaction

✓emergent lattice gauge theory (low energy)

Strategies for Microscopic Implementation

• Lattice Gauge Theory: gauge symmetry fundamental

• Implementation: gauge symmetry approximate → protect against errors

G
x

⇠ ⇢�r · E

H1



Implementating Gauss Constraints

• Bose-Fermi mixtures in superlattices
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fermions
bosons

bosons

• Gauss constraint
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~ total number of atoms on site x  fixed: “super-Mott insulator”
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Implementating Gauss Constraints

• Bose-Fermi mixtures in superlattices
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fermions
bosons

bosons

43

H
microscopic

= U
X

x

G̃2

x

+ . . .

• enforcing the Gauss Law as an energy constraint 

Bose + Fermi Hubbard model

energy

G̃
x

|physical statesi = 0

U  (large)

• emergent lattice gauge theory 

- dynamics in physical subspace: analogous to t-J model
- we have verified the reduction: microscopic to the   
  quantum link model at the few- and many-body level

U↵�

tF

tB



String breaking and confinement
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quark anti-quark mesonflux string
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Mesons +
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Critical string length
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Rem.: string breaking 1D vs. 3D / non-Abelian 
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system length L 

decreasing
mass

~L string broken string

Energy relative to vacuum

Spin-1: String Breaking
pictures Bern group
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